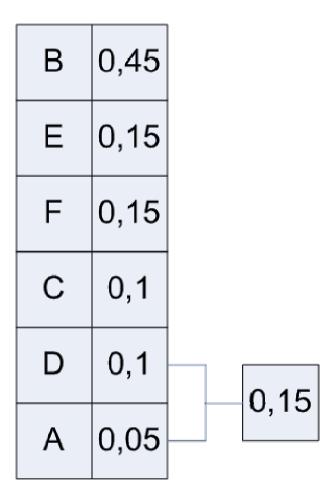
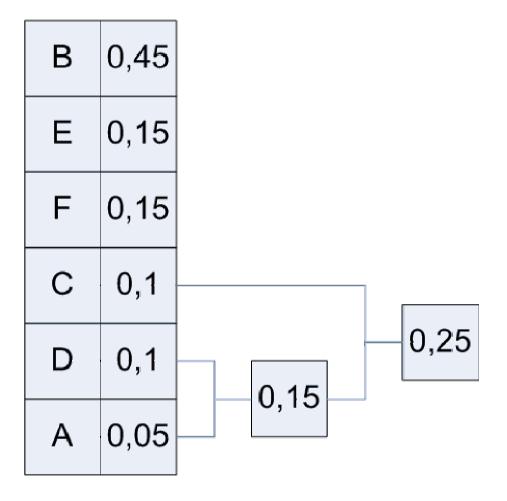
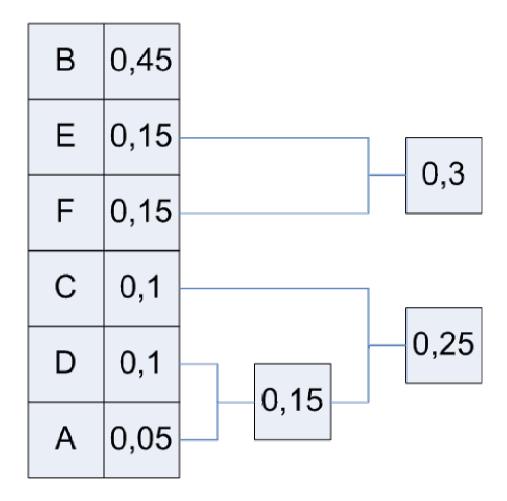

Кодирование

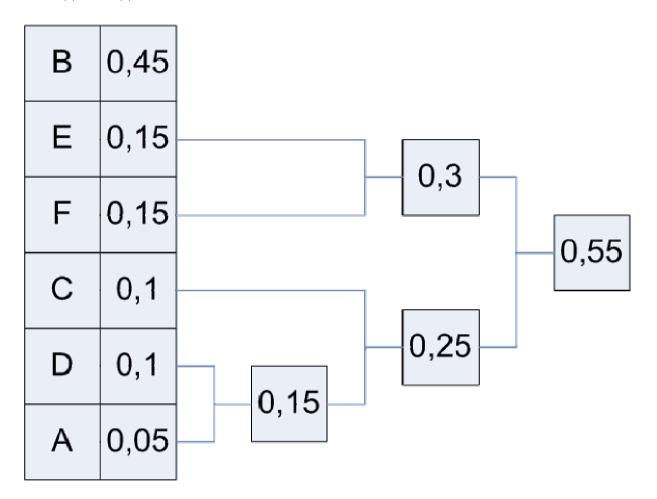
Задача 1. Кодирование в сообщение минимальной длины

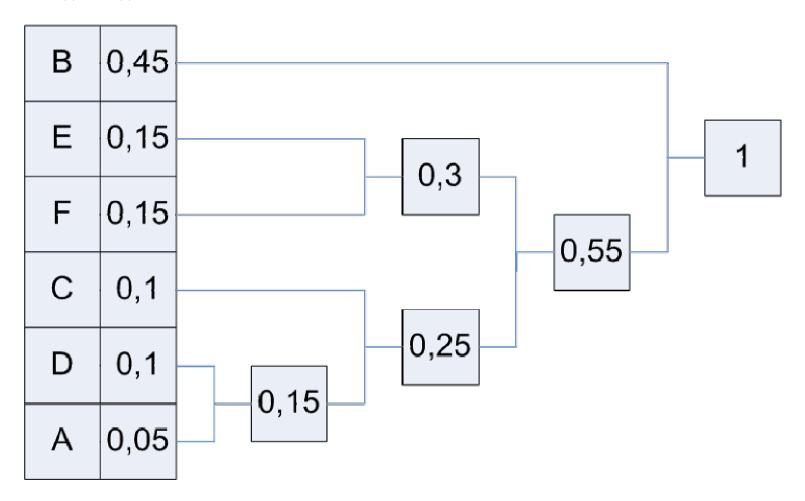

Кодирование Хаффмана

Дано: вероятности появления символов

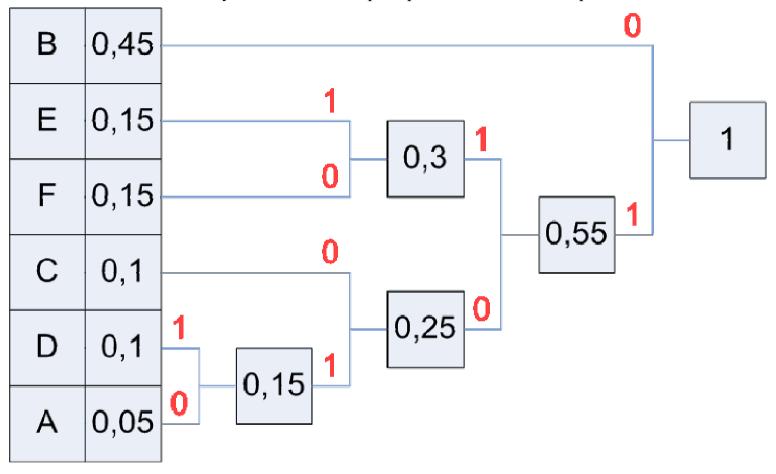

Символ	A	В	С	D	Е	F
Вероятность	0,05	0,45	0,1	0,1	0,15	0,15


Отсортируем по убыванию вероятностей:


В	0,45
Е	0,15
F	0,15
С	0,1
D	0,1
Α	0,05

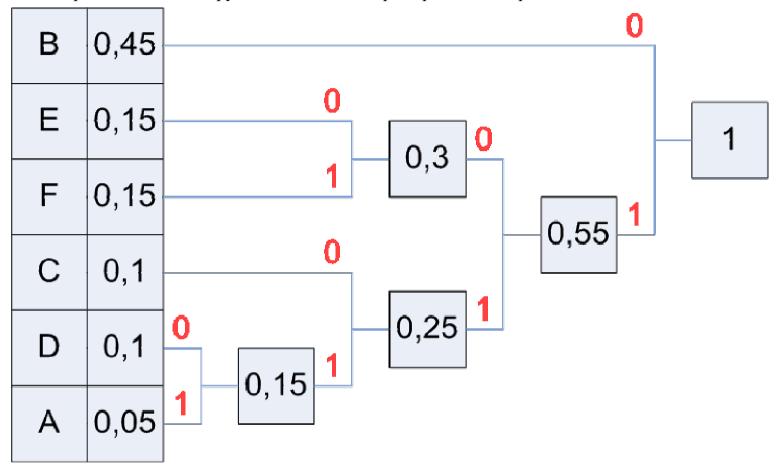


Объединим два наименьших значения:



Расставим 0 и 1 каким-нибудь способом, например, 0 – для меньшей вероятности, 1 – для большей вероятности:

Запишем коды символов, справа налево:


Символ	A	В	С	D	Е	F
Код	1010	0	100	1011	111	110

Рассчитаем среднюю длину:

Символ	A	В	С	D	Е	F
Код	1010	0	100	1011	111	110
Длина	4	1	3	4	3	3
Вероятность	0,05	0,45	0,1	0,1	0,15	0,15

$$\overline{L} = 0,05 \cdot 4 + 0,45 \cdot 1 + 0,1 \cdot 3 + 0,1 \cdot 4 + 0,15 \cdot 3 + 0,15 \cdot 3 = 2,25$$

Можно расставить 0 и 1 другим способом, например, 0 – для верхних веток, 1 – для нижних:

Запишем коды символов, справа налево:

Символ	A	В	С	D	Е	F
Код	1111	0	110	1110	100	101

Пример декодирования

Принятое сообщение:

0 1 1 1 1 1 1 1 0 1 0 1 1

Коды символов:

Символ	A	В	С	D	Е	F
Код	1111	0	110	1110	100	101

Результат:

0	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	0	1	0	0
В	A? C? D? E? F?	A? C? D?	A? D?	A	A? C? D? E? F?	A? C? D?	A? D?	D	A? C? D? E? F?	E? F?	F	A? C? D? E? F?	A? C? D?	A? D?	A	A? C? D? E? F?	A? C? D?	С	A? C? D? E? F?	E? F?	Е
В		A				Γ)			F			A	1			С			Е	

Задача 2. Исправление ошибок

Код Хэмминга

Исходное сообщение: k разрядов

Передаваемое сообщение: k -разрядный код + m контрольных символов

Длина сообщения: n = k + m

Тип ошибок, которые может исправить код: искажение одного символа.

+ вариант отсутствия искажений

Передаваемое сообщение: $a_1 a_2 \dots a_{n-1} a_n$

Возможные принимаемые сообщения:

$$b_1 a_2 \dots a_{n-1} a_n$$
, n вариантов с искажением

 $a_1b_2...a_{n-1}a_n$

Итого n+1 вариантов принимаемых сообщений для каждого передаваемого сообщения.

 $a_1 a_2 \dots b_{n-1} a_n$,

 $a_1a_2...a_{n-1}b_n$,

 $a_1 a_2 \dots a_{n-1} a_n$

Для того, чтобы код мог исправлять такую ошибку, необходимо:

$$2^m \ge n+1$$

$$2^m \ge k + m + 1$$

k = 1	m=2	n=3
k = 2, 3, 4	m=3	n = 5, 6, 7
k = 511	m=4	n = 915
k = 1226	m = 5	n = 1731

$$k_4 k_3 k_2 k_1 \rightarrow k_4 k_3 k_2 m_3^4 k_1^2 m_2^2 m_1^1$$

Пример 1.

Принят код 0111011 (слева – младший разряд, справа – старший)

Восстановить переданный код сообщения и исходное сообщение (информационную часть), если кодирование было осуществлено методом Хэмминга и в сообщении было не более одной ошибки типа замещения разряда.

1. Декодирование

0	1	1	1	0	1	1
1		3		5	6	7
m_1	m_2	k_1	m_3	k_2	k_3	k_4

Номера разрядов, значение которых равно 1, запишем в двоичном виде.

0	1	1	1	0	1	1
1	2	3	4	5	6	7
	010	011	100		110	111

Просуммируем (алгебраически, без переносов)

1	1	1
1	1	0
1	0	0
0	1	1
 0	1	0
1	0	0

100 – следовательно, искажён 4-й бит

	1	2	3	4	5	6	7
принятое сообщение	0	1	1	1	0	1	1
исправленное сообщение	0	1	1	0	0	1	1

2. Проверим: рассмотрим код 0110011 – если бы искажения не было. Номера разрядов, значение которых равно 1, запишем в двоичном виде и просуммируем.

0	1	1	0	0	1	1
1	2	3	4	5	6	7
	010	011			110	111

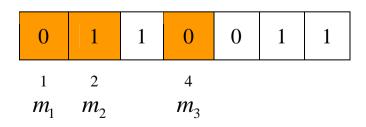
000 – значит, не было искажений

3. Выделим информационную часть

Переданное сообщение:

0	1	1	0	0	1	1
1	2	3	4	5	6	7
m_1	m_2	k_1	m_3	k_2	k_3	k_4

Исходное сообщение (информационная часть):


$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ k_1 & k_2 & k_3 & k_4 \end{bmatrix}$$

4. Проверим: запишем процедуру кодирования.

Исходное сообщение (информационная часть):

1	0	1	1		
k_1	k_2	k_3	k_4	_	

*	*	1	*	0	1	1
1	2	3	4	5	6	7
m_1	m_2	k_1	m_3	k_2	k_3	k_4

Номера разрядов, значение которых равно 1, запишем в двоичном виде и просуммируем

Пример 2. Принят код 010101 (слева – младший разряд, справа – старший)

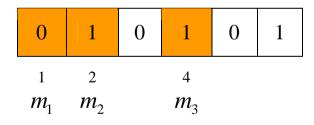
Восстановить переданный код сообщения и исходное сообщение (информационную часть), если кодирование было осуществлено методом Хэмминга и в сообщении было не более одной ошибки типа замещения разряда.

Декодирование

0	1	0	1	0	1
1	2	3	4	5	6
m_1	m_2	k_1	m_3	k_2	k_3

Номера разрядов, значение которых равно 1, запишем в двоичном виде.

0	1	1 0		0	1	
1	2 3		4	5	6	
	010		100		110	


Просуммируем (алгебраически, без переносов)

000 – следовательно, не было искажений

	1	2	3	4	5	6
принятое сообщение	0	1	0	1	0	1
переданное сообщение	0	1	0	1	0	1
исходное сообщение			0		0	1

Проверим: запишем процедуру кодирования.

*	*	0	*	0	1
1	2	3	4	5	6
m_1	m_2	k_{1}	m_3	k_2	k_3

Номера разрядов, значение которых равно 1, запишем в двоичном виде и просуммируем

Пример 3. Принят код 110010 (слева – младший разряд, справа – старший)

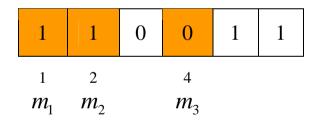
Восстановить переданный код сообщения и исходное сообщение (информационную часть), если кодирование было осуществлено методом Хэмминга и в сообщении было не более одной ошибки типа замещения разряда.

Декодирование

1	1	0	0	1	0
1	2	3	4	5	6
m_1	m_2	k_1	m_3	k_2	k_3

Номера разрядов, значение которых равно 1, запишем в двоичном виде.

1	1	0	0	1	0
1	2	3	4	5	6
001	010			101	


Просуммируем (алгебраически, без переносов)

110 – следовательно, искажён 6-й бит

	1	2	3	4	5	6
принятое сообщение	1	1	0	0	1	0
переданное сообщение	1	1	0	0	1	1
исходное сообщение			0		1	1

Проверим: запишем процедуру кодирования.

*	*	0	*	1	1
1	2	3	4	5	6
m_1	m_2	k_1	m_3	k_2	k_3

Номера разрядов, значение которых равно 1, запишем в двоичном виде и просуммируем

Циклические коды

Для построения циклического кода необходим так называемый образующий (производящий) многочлен (полином), который должен быть примитивным неразлагаемым.

Образующие многочлены для обнаружения единичных ошибок:

k = 2, 3, 4	m=3	n = 5, 6, 7	$x^3 + x + 1$
k = 511	m=4	n = 915	$x^4 + x + 1$
k = 1226	m=5	n = 1731	$x^5 + x^4 + 1$

Пример.

Часть 1. Кодирование

Сообщение: 1011 (слева – младший разряд, справа – старший)

Используем образующий многочлен: $g(x) = x^3 + x + 1$

$$A(x) = x^3 + x^2 + 1$$

$$k = 4 \Rightarrow m = 3, n = 7$$

Сдвиг информационной части:

$$x^{m}A(x) = x^{6} + x^{5} + x^{3}$$

			1	0	1	1
0	1	2.2	3	.4	3. 5	3. 6

$$\begin{array}{c|cccc}
x^6 + x^5 + x^3 & x^3 + x + 1 \\
x^6 + x^4 + x^3 & x^3 \\
\hline
x^5 + x^4
\end{array}$$

$$\begin{array}{c|cccc}
x^6 + x^5 + x^3 & x^3 + x + 1 \\
x^6 + x^4 + x^3 & x^3 + x^2 \\
\hline
x^5 + x^4 & \\
x^5 + x^3 + x^2 & \\
\hline
x^4 + x^3 + x^2 & \\
\end{array}$$

$$\begin{array}{c|c}
x^{6} + x^{5} + x^{3} & x^{3} + x + 1 \\
x^{6} + x^{4} + x^{3} & x^{3} + x^{2} + x \\
\hline
x^{5} + x^{4} & x^{5} + x^{3} + x^{2} \\
\hline
x^{4} + x^{3} + x^{2} & x^{4} + x^{2} + x \\
\hline
x^{4} + x^{2} + x & x^{3} + x
\end{array}$$

$$\begin{array}{c|ccccc}
x^{6} + x^{5} + x^{3} & x^{3} + x + 1 \\
x^{6} + x^{4} + x^{3} & x^{3} + x^{2} + x + 1
\end{array}$$

$$\begin{array}{c|ccccc}
x^{5} + x^{4} & & \\
x^{5} + x^{3} + x^{2} & & \\
\hline
x^{4} + x^{3} + x^{2} & & \\
& x^{4} + x^{2} + x & \\
\hline
x^{3} + x & & \\
& x^{3} + x + 1 & \\
\hline
\end{array}$$

Получили

$$p(x) = x^3 + x^2 + x + 1$$
$$r(x) = 1$$

Передаваемое сообщение:

$$p(x) \cdot g(x) = (x^3 + x^2 + x + 1) \cdot (x^3 + x + 1) = x^6 + x^5 + x^3 + 1$$

1	0	0	1	0	1	1
x^0	x^1	x^2	x^3	χ^4	x^5	x^6

$$r(x)=1$$
 $x^{m}A(x)=x^{6}+x^{5}+x^{3}$

Часть 2. Декодирование

Пусть в принятом сообщении ошибка в 3 слева разряде

переданное сообщение	1	0	0	1	0	1	1
	x^0	x^1	x^2	x^3	x^4	x^5	x^6
принятое сообщение	1	0	1	1	0	1	1
$B(x) = x^6 + x^5 + x^3 + x^2 + 1$							

Разделим
$$B(x) = x^6 + x^5 + x^3 + x^2 + 1$$
 на $g(x) = x^3 + x + 1$: $x^6 + x^5 + x^3 + x^2 + 1$ $x^3 + x + 1$ $x^6 + x^4 + x^3$ $x^3 + x^2 + x + 1$ $x^5 + x^4 + x^2 + 1$ $x^5 + x^3 + x^2$ $x^4 + x^3 + 1$ $x^4 + x^2 + x$ $x^3 + x^2 + x + 1$ $x^3 + x + 1$ $x^3 + x + 1$ $x^2 + x + 1$

$$r*(x)=x^2$$

Код ошибки

$$\begin{array}{c|cccc} 0 & 0 & 1 \\ \hline \\ r^0 & r^1 & r^2 \\ \hline \end{array}$$

Эту процедуру можем повторить для всех вариантов ошибок:

Переданное сообщение	Ошибка	Принятое сообщение	Многочлен в остатке	Код ошибки
1001011	_	1001011	0	000
	в первом слева разряде	0001011	1	100
	во втором слева разряде	1101011	x	010
	в третьем слева разряде	1011011	x^2	001
	в четвёртом слева разряде	1000011	x+1	110
	в пятом слева разряде	1001111	$x^2 + x$	011
	в шестом слева разряде	1001001	$x^2 + x + 1$	111
	в седьмом слева разряде	1001010	$x^2 + 1$	101

(слева – младший разряд, справа – старший)

Почему код называется «циклическим»?

Рассмотрим случай без ошибок.

переданное сообщение	1	0	0	1	0	1	1
	x^0	x^1	x^2	x^3	x^4	x^5	x^6
c двиг \longrightarrow	1	1	0	0	1	0	1
c двиг $ \longrightarrow$	1	1	1	0	0	1	0
$_{ m c}$ двиг $ ightarrow$	0	1	1	1	0	0	1
cдвиг $ ightarrow$	1	0	1	1	1	0	0
cдвиг $ o$	0	1	0	1	1	1	0
cдвиг $ o$	0	0	1	0	1	1	1
c двиг $ \longrightarrow$	1	0	0	1	0	1	1

Таким образом, при любом сдвиге код остаётся корректным. Если нет ошибок, то остаток всегда равен 0.

Более того, если есть ошибка в каком-то разряде, то код ошибки для каждого разряда не зависит от сдвига.

Нет ошибок	Ошибка	Ошибка	Ошибка	Ошибка	Ошибка	Ошибка	Ошибка
	в 1 разряде	во 2 разряде	в 3 разряде	в 4 разряде	в 5 разряде	в 6 разряде	в 7 разряде
1101001	1101000	1101011	1101101	1100001	1111001	1001001	0101001
c двиг \rightarrow							
1010011	1010010	1010001	1010111	1011011	1000011	1110011	0010011
c двиг \rightarrow							
0100111	0100110	0100101	0100011	0101111	0110111	0000111	1100111
c двиг \rightarrow							
1001110	1001111	1001100	1001010	1000110	1011110	1101110	0001110
$_{\mathrm{сдвиг}} o$							
0011101	0011100	0011111	0011001	0010101	0001101	0111101	1011101
c двиг \rightarrow							
0111010	0111011	0111000	0111110	0110010	0101010	0011010	1111010
c двиг \rightarrow							
1110100	1110101	1110110	1110000	1111100	1100100	1010100	0110100
код ошибки	код ошибки	код ошибки	код ошибки	код ошибки	код ошибки	код ошибки	код ошибки
000	001	010	100	011	110	111	101

(справа – младший разряд, слева – старший)