К-значная логика

Ранее значения всех переменных и функций были либо 0, либо 1. Логика двузначная.

Рассмотрим общий случай, к-значную логику.

Стандартные арифметические операции

Стандартные арифметические операции реализуются по модулю k – остаток от деления на k .

k = 2							
x	x+1	x-1	-x				
0	1	1	0				
1	0	0	1				

<u>k</u> =	= 3				
x	x+1	x-1	x+2	2x	-x
0	1	2	2	0	0
1	2	0	0	2	2
2	0	1	1	1	1

k = 4								
x	x+1	x-1	x+2	2x	3 <i>x</i>	-x		
0	1	3	2	0	0	0		
1	2	0	3	2	3	3		
2	3	1	0	0	2	2		
3	0	2	1	2	1	1		

$$-x = (k - x) \pmod{k}$$

Отрицание

k = 2				
X	\overline{x}			
0	1			
1	0			

Отрицание Поста

$$\overline{x} = (x+1) \pmod{k}$$

Отрицание Лукасевича

$$\sim x = (k-1) - x$$

k = 3						
х	\overline{x}	$\sim x$				
0	1	2				
1	2	1				
2	0	0				

$$k = 4$$
 x
 x

 0
 1

 1
 2

 2
 3

 1
 0

Дополнительные операции

Усечённая разность

$$x \dot{-} y = \begin{cases} x - y, & x \ge y \\ 0, & x < y \end{cases}$$

Комбинации

$$-(\sim x) = \overline{x}$$
$$-\overline{x} = \sim x$$
$$\overline{\sim x} = -x$$

$$-\overline{x} = \sim x$$

$$\sim x = -x$$

Домашнее задание: доказать или проверить эти утверждения.

Задачи

Задача 1.

Записать таблицу значений выражения

$$f = \max(x, y).$$

Сложение и умножение осуществляется по модулю k=3.

<i>y x</i>	0	1	2
0	0	1	2
1	1	1	2
2	2	2	2

Задача 2.

Записать таблицу значений выражения
$$f = (x + \overline{x}) \div (2 \cdot \sim y)$$
.

Сложение и умножение осуществляется по модулю k=4 .

X	\overline{x}	$x + \overline{x}$
0	1	1
1	2	3
2	3	1
3	0	3

у	$\sim y$	$2 \cdot \sim y$
0	3	2
1	2	0
2	1	2
3	0	0

Задача 3.

Записать таблицу значений выражения
$$f = -\left(\overline{x}\right)^2 \cdot \sim (y+1).$$

Сложение и умножение осуществляется по модулю k=5 .

X	\overline{x}	$\left(\overline{x}\right)^2$	$-\left(\overline{x}\right)^2$
0	1	1	4
1	2	4	1
2	3	4	1
3	4	1	4
4	0	0	0

у	y+1	$\sim (y+1)$
0	1	3
1	2	2
2	3	1
3	4	0
4	0	4

$$f = -\left(\overline{x}\right)^2 \cdot \sim (y+1)$$

	у	0	1	2	3	4
X						
0						
1						
2						
3						
4						

$$f = -\left(\overline{x}\right)^2 \cdot \sim (y+1)$$

	у	0	1	2	3	4
	$\sim (y+1)$	3	2	1	0	4
X	$-\left(\overline{x}\right)^2$					
0	4	12	8	4	0	16
1	1	3	2	1	0	4
2	1	3	2	1	0	4
3	4	12	8	4	0	16
4	0	0	0	0	0	0

у	0	1	2	3	4
$\sim (y+1)$	3	2	1	0	4
$-\left(\overline{x}\right)^2$					
4	2	3	4	0	1
1	3	2	1	0	4
1	3	2	1	0	4
4	2	3	4	0	1
0	0	0	0	0	0
	$\sim (y+1)$ $-\left(\overline{x}\right)^2$ 4 1 1 4	$ \begin{array}{c c} & & \\ & \sim (y+1) & 3 \\ & -\left(\overline{x}\right)^2 & \\ & 4 & 2 \\ \hline & 1 & 3 \\ \hline & 1 & 3 \\ \hline & 4 & 2 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$f = -\left(\overline{x}\right)^2 \cdot \sim (y+1)$$

x	у	0	1	2	3	4
0		2	3	4	0	1
1		3	2	1	0	4
2		3	2	1	0	4
3		2	3	4	0	1
4		0	0	0	0	0

Домашнее задание

Задача 1.

Записать таблицу значений выражения

$$f = x + 2y.$$

Сложение и умножение осуществляется по модулю k=3.

Задача 2.

Записать таблицу значений выражения

$$f = x \dot{-} y^2$$

Сложение и умножение осуществляется по модулю k = 4 .

Задача 3.

Записать таблицу значений выражения

$$f = x^2 \cdot y.$$

Сложение и умножение осуществляется по модулю k = 5 .