Идентификация и диагностика. Лабораторная работа №1. Моделирование случайных факторов

Программа работы:

1. Провести моделирование генерации нормально-распределенных чисел для следующих значений математического ожидания и дисперсии:

математическое ожидание	0	0	1
дисперсия	1	4	4

Выяснить зависимость оценок (точечных и интервальных) математического ожидания и дисперсии от объема выборки ($n=10,\,20,\,50,\,100,\,1000$) при доверительном уровне $a=0,9;\,0,95$. Построить графики зависимостей точечных оценок математического ожидания и дисперсии от объема выборки и их доверительные интервалы

Графики, иллюстрирующие последовательности случайных чисел и плотности их распределения НЕ приводить.

- 2. Определить объемы выборки, необходимые для получения доверительного интервала математического ожидания, равного 0.1 при доверительном уровне $a=0.9;\,0.95$. Провести моделирование для полученного значения объема выборки.
- 3. Провести моделирование генерации вектора нормально-распределенных чисел при размерности 2 и нулевом математическом ожидании для следующих значений корреляционных матриц:

$$R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ R = \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}, \ R = \begin{bmatrix} 1 & 1-r \\ 1-r & 1 \end{bmatrix}, \ R = \begin{bmatrix} 1 & r-1 \\ r-1 & 1 \end{bmatrix}.$$

Построить оценки заданной корреляционной матрицы и выяснить зависимость оценок от объема выборки.

Построить доверительные интервалы для оценки коэффициента корреляции в зависимости от объема выборки $n=10,\,20,\,50,\,100,\,1000$, при доверительном уровне $a=0.9;\,0.95$.

Графики, иллюстрирующие значения случайных векторов НЕ приводить.

- 4. Провести моделирование генерации случайного процесса, представленного уравнением авторегрессии 1 порядка. Определить оценку коэффициента авторегрессии a1 для случаев из таблицы вариантов.
- 5. Для каждого коэффициента авторегрессии a1 определить коэффициент авторегрессии a2 для получения процесса авторегрессии 2 порядка, исходя из условия стационарности случайного процесса.
- 6. Провести моделирование генерации случайного процесса, представленного уравнением авторегрессии 2 порядка. Определить оценку коэффициентов авторегрессии a1 и a2.
 - 7. Сформулировать выводы о проделанной работе, оформить отчет.

Вариант	r	a1		Вариант	r	а	1
1	0,18	0,2	0,7	14	0,16	0,25	0,75
2	0,20	0,3	0,9	15	0,24	0,35	0,85
3	0,15	0,15	0,6	16	0,12	0,2	0,5
4	0,05	0,25	0,7	17	0,06	0,3	0,65
5	0,25	0,4	0,85	18	0,27	0,45	0,8
6	0,30	0,1	0,6	19	0,32	0,15	0,75
7	0,22	0,15	0,5	20	0,25	0,2	0,55
8	0,08	0,35	0,8	21	0,09	0,4	0,7
9	0,18	0,2	0,55	22	0,20	0,15	0,6
10	0,13	0,3	0,75	23	0,10	0,25	0,8
11	0,12	0,4	0,95	24	0,36	0,35	0,9
12	0,27	0,25	0,6	25	0,40	0,3	0,65
13	0,10	0,1	0,8				