Идентификация и диагностика. Лабораторная работа №4. Моделирование системы диагностирования, построенной с использованием фильтра Калмана

Исследовать обнаружение дефектов в системе, где для оценки переменных состояния объекта диагностирования (ОД) используется фильтр Калмана. В качестве ОД использовать:

- 1) процесс авторегрессии 1 порядка с коэффициентом a1.
- 2) процесс авторегрессии 2 порядка с коэффициентами a1 и a2.

Один из коэффициентов авторегрессии – из таблицы вариантов. Второй коэффициент авторегрессии выбрать произвольно, исходя из условия стационарности случайного процесса.

При проведении моделирования в качестве базовых выбрать следующие параметры в режиме нормального функционирования ОД (без дефекта): математическое ожидание шума в канале возмущения -0, дисперсия -1, математическое ожидание шума в канале измерения -0, дисперсия -4.

Программа работы:

- 1. Осуществить построение систем диагностирования с использованием фильтра Калмана для объектов, представленных процессами авторегрессии 1 и 2 порядков.
- 2. Провести моделирование системы в режиме нормального функционирования, рассмотреть процесс авторегрессии 1 порядка. Построить графики обновляющего процесса и нормализованного обновляющего процесса. Определить параметры обновляющего процесса (математическое ожидание, дисперсия, корреляционная функция), построить необходимые графики.
 - 3. Определить следующие типы дефектов:
 - 1) Постоянное смещение уровня шумов в канале возмущения, базовое значение: на 2;
 - 2) Постоянное смещение уровня шумов в канале измерения, базовое значение: на 4;
 - 3) Увеличение дисперсии шумов в канале возмущения, базовое значение: в 4 раза;
 - 4) Увеличение дисперсии шумов в канале измерения, базовое значение: в 4 раза;
 - 5) Изменение коэффициентов авторегрессии.

Ввести три уровня для каждого дефекта: малый, средний и большой; определить величины дефектов для каждого уровня.

Провести моделирование системы в режиме функционирования с дефектом, рассмотреть процесс авторегрессии 1 порядка. Момент времени возникновения дефекта определить как половину времени наблюдения. Построить графики обновляющего процесса и нормализованного обновляющего процесса. Определить параметры обновляющего процесса (математическое ожидание, дисперсия, корреляционная функция) для периода времени после возникновения дефекта, построить необходимые графики.

- 4. Выполнить пункты 2-3 для процесса авторегрессии 2 порядка
- 5. Сформулировать выводы о проделанной работе, оформить отчет.

Вариант	a1	Типы дефектов	Вариант	a1	Типы дефектов
1	0,2	1, 3	14	0,25	1, 3
2	0,3	2, 4	15	0,35	2, 4
3	0,15	1, 5	16	0,2	1, 5
4	0,25	1, 2	17	0,3	1, 2
5	0,4	3, 4	18	0,45	3, 4
6	0,1	3, 5	19	0,15	3, 5
7	0,15	2, 5	20	0,2	2, 5
8	0,35	4, 5	21	0,4	4, 5
9	0,2	1, 4	22	0,15	1, 4
10	0,3	2, 3	23	0,25	2, 3
11	0,4	1, 3	24	0,35	1, 3
12	0,25	2, 4	25	0,3	2, 4
13	0,1	1, 2			