Список заданий на контрольную

- 1. Теоретический вопрос о канонической форме. (2 балла)
- 2. Является ли данная запись ЗЛП канонической? (1 балл за каждую)

A)
$$\begin{cases} x_1 + 2x_2 - x_3 = 14 \\ 2x_1 + 3x_2 - 2x_3 = 5 \end{cases}$$
 B)
$$\begin{cases} x_1 + 2x_2 - x_3 = 14 \\ 2x_1 + 3x_2 - 2x_3 = 5 \end{cases}$$
 B)
$$\begin{cases} x_1 + 2x_2 - x_3 = 14 \\ 2x_1 + 3x_2 - 2x_3 = 5 \end{cases}$$
 B)
$$\begin{cases} x_1 + 2x_2 - x_3 = 14 \\ 2x_1 + 3x_2 - 2x_3 = 5 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - x_3 = 14 \\ 2x_1 + 3x_2 - 2x_3 = 5 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - x_3 = 14 \\ 2x_1 + 3x_2 - 2x_3 = 5 \end{cases}$$

3. Для каждой задачи линейного программирования (3 балла за каждую): 1) привести к канонической форме, 2) выбрать начальный базис, 3) составить симплекс-таблицу для начального базиса.

A)
$$\begin{cases} x_1 + 2x_2 - x_3 = 14 \\ 2x_1 + 3x_2 - 2x_3 = 5 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_3 \ge 0 \end{cases}$$
 B)

4. Указать двойственную ЗЛП для исходной (1 балл)

исходная:

$$\max x_1 + 2x_2$$

$$\begin{cases} 3x_1 - 4x_2 \le 5\\ 6x_1 - 7x_2 \le 8\\ x_1 \ge 0\\ x_2 \ge 0 \end{cases}$$

5. Теоретический вопрос о двойственной задаче (2 балла)

6. Проанализировать симплекс-таблицы: (максимум 20 баллов)	Α	Б
базис допустим с точки зрения прямого Симплекс-метода (да/нет)		
базис допустим и оптимален с точки зрения прямого Симплекс-метода (да/нет)		
базис допустим и оптимален, задача имеет не единственное решение с точки зрения прямого		
Симплекс-метода (да/нет)		
симплекс-таблица сигнализирует о том, что область допустимых решений не ограничена (да/нет)		
базис допустим с точки зрения двойственного Симплекс-метода (да/нет)		
базис допустим и оптимален с точки зрения двойственного Симплекс-метода (да/нет)		
координаты опорной точки: значение X_1		
координаты опорной точки: значение X_2		
координаты опорной точки: значение X_3		
координаты опорной точки: значение X_4		
координаты опорной точки: значение X_5		
значение функции в опорной точке		
разрешающий столбец (имя переменной либо прочерк)		
разрешающая строка (имя переменной либо прочерк)		

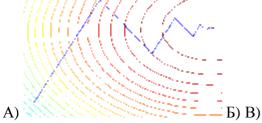
	X_1	X_2	X_4	b
X_3	1	-2	-1	2
X_5	-2	3	-1	3
X_6	-1	-2	2	4
F	-1	-2	-3	5

	X_1	X_2	X_4	b
X_3	1	-2	-1	2
X_5	-2	3	-1	3
X_6	-1	-2	2	4
F	0	-2	-3	5

	X_1	X_2	X_4	b
X_3	1	-2	-1	2
X_5	-2	3	-1	-3
X_6	-1	-2	2	4
F	-1	-2	-3	5

Ī		X_1	X_2	X_4	В
	X_3	1	-2	-1	2
ĺ	X_5	-2	3	-1	-3
ĺ	X_6	-1	-2	2	4
	F	-1	-2	3	5

	X_1	X_2	X_4	В
X_3	1	-2	-1	2
X_5	-2	3	-1	3
X_6	-1	-2	2	4
F	-1	-2	3	5


	X_1	X_2	X_4	b
X_3	1	2	-1	2
X ₃	-2	3	-1	3
X_6	-1	2	2	4
F	-1	2	3	5

- 7. Теоретический вопрос об опорных точках (2 балла)
- 8. Теоретический вопрос о начальном базисе (2 балла)
- 9. Сколько допустимых опорных точек имеет данная задача линейного программирования (2 балла)? Является ли указанная точка опорной точкой? (1 балл за каждую)

$$\max x_1 + x_2$$

$$\begin{cases} x_1 + x_2 \le 3 \\ 4x_1 + 3x_2 \le 12 \end{cases}$$

- $4x_1 + 3x_2 \le 12$ A) (1, 0) B) (0, 4) B) (1, 1) Γ) (0, 2)
- 10. За сколько шагов метод позволяет найти максимум данной функции? (1 балл за каждую)
- А) метод Ньютона Б) метод сопряженных градиентов
- 11. Траектория поиска оптимального решения каким методом (какими методами) изображена на рисунке (задача максимизации квадратичной функции от двух переменных).? (1 балл за каждый рисунок)

- 1) метод релаксации 2) метод Ньютона 3) метод сопряженных градиентов 4) метод наискорейшего подъема 5) метод Бройдена
- 12. Указать активные ограничения для данной задачи (1 балл за каждую)

$$\begin{cases} \max(x_1 + x_2) \\ x_1^2 + x_2^2 - 4 \le 0 \end{cases}$$

А) в точке (1,-1), Б) в точке (-2,-2)

- 14. Теоретический вопрос о методах решения задачи условной оптимизации нелинейной функции (1 балл за каждую) А) Б) В)
- 15. Задача по условной оптимизации (4 балла)

13. Доказать теоретический вопрос (2 балла)