Задача 2.

В информационную систему с числом устройств обработки N поступает непрерывный поток сообщений. При занятости системы очередное сообщение записывается в буферную память, рассчитанную на хранение m сообщений. При этом информация, которая содержится в каждом сообщении, теряет свою ценность в среднем через T минут после его получения. Поток сообщений простейший с интенсивностью $\lambda = 10 \text{ мин}^{-1}$. В среднем за минуту каждое устройство обрабатывает K сообщений. Все случайные величины распределены по экспоненциальному закону.

Определить:

- вероятность отказа вероятность того, что сообщение не будет обработано изза ограниченности очереди.
- вероятность потери вероятность того, что поступившее сообщение не будет своевременно обработано и, следовательно, будет потеряно.
- вероятность неуспешного обслуживания включает в себя вероятность отказа и вероятность потери.

Сравнить систему с такой же системой, в которой информация не теряет свою ценность.

Набор	T	K	m	N
2-1	2	12	5 6	1
2-2	1	13	6	1
2-1 2-2 2-3	4	11	4 3 5	1
2-4 2-5 2-6 2-7 2-8 2-9	2 1 3 2 3 2	20	3	1
2-5	1	12	5	1
2-6	3	11	6	1
2-7	2	25	8	1
2-8	3	15	4	1
2-9	2	15	5	1
2-10	1	14	3	1
2-11	1 2	6 7	5	2
2-12	1	7	6	2
2-13	4	8	4	2
2-14	2	10 7	3	2
2-15	1	7	5	2
2-16	3	8	6	2
2-17	2	8 12	8	2
2-18	4 2 1 3 2 3	9	8 4 5 3 5 6 4 3 5 6 8 4 5 3	1 1 2 2 2 2 2 2 2 2 2
2-19	2	9	5	2
2-20	1	10	3	2

Задача С.

Рассматривается работа столовой самообслуживания. Обеды выдают К поваров. Среднее время выдачи обеда на одного посетителя равно t1 минут. Плотность потока посетителей около N человек в минуту. В очереди могут одновременно стоять не более m человек. В среднем посетитель стоит в очереди t2 минут, после чего покидает столовую. Если посетителя начали обслуживать, то обслуживание не прерывается. На обед посетитель в среднем затрачивает t3 минут

Определить, сколько времени потратит посетитель в столовой, если количество мест за столами всегда достаточно для размещения лиц, уже получивших обед. Определить среднее число занятых поваров и среднее число ожидающих посетителей. Определить вероятности того, что посетитель:

- успешно пообедает;
- уйдет, не дождавшись своей очереди;
- уйдет, не имея возможности встать в очередь.

Набор	N	t1	t2	t3	K	m
C-1	2	4	10	10	4	20
C-2	1	4	10	10	3	15
C-3	1	3	10	10	2	18
C-4	1	3	10	10	2	15
C-5	2	4	10	10	4	18
C-6	1	4	10	10	3	16
C-7	1	3	10	10	2	16
C-8	2	3	10	10	2	17
C-9	2	3	10	10	3	16
C-10	2	4	10	10	3	15
C-11	2	4	10	10	2	17
C-12	1	4	10	10	4	19

Задача А17А.

Бакалейный магазин работает с K кассами и общей очередью. Вывеска возле касс извещает покупателей, что в любой момент будет открыта дополнительная касса, как только число покупателей в очереди превысит L. Это означает, что если число покупателей меньше или равно (L+1), то работать будет лишь одна касса, в очереди — от 0 до L (не превысит L, значит одна касса). Если число покупателей равно (L+2), то откроется вторая касса, в очереди останется L. Если число покупателей равно (L+3), то в очереди окажется (L+1) покупателей, значит откроется третья касса, в очереди станет L. И так далее. Покупатели подходят к кассам с интенсивностью λ человек в час. Время обслуживания одного покупателя в кассе распределено по экспоненциальному закону со средним t минут.

Определить среднее число покупателей в очереди и вероятность отказа, если очередь ограничена емкостью m.

Исходные данные:

Набор	λ	K	L	t	m
A17A-1	10	3	3	12	12
A17A-2	4	2	3	20	10
A17A-3	8	3	3	12	10
A17A-4	5	2	3	20	12

Задача А17Б.

Бакалейный магазин работает с K кассами и общей очередью. Вывеска возле касс извещает покупателей, что в любой момент будут открыты дополнительные кассы, по одной кассе на каждые L покупателей. Это означает, что если число покупателей меньше или равно L, то работать будет лишь одна касса. Если число покупателей от (L+1) до (2*L), то будет работать две кассы, и т.д. Если имеется больше (L*(K-1)) покупателей, будут открыты все K касс. Покупатели подходят к кассам с интенсивностью λ человек в час. Время обслуживания одного покупателя в кассе распределено по экспоненциальному закону со средним t минут.

Определить среднее число покупателей в очереди и вероятность отказа, если очередь ограничена емкостью m.

Набор	λ	K	L	t	m
А17Б-1	10	3	3	12	12
А17Б-2	4	2	3	20	10
А17Б-3	8	3	3	12	10
А17Б-4	5	2	3	20	12

Задача Т5.

Рассматривается модель бильярдного клуба, куда посетители обычно приходят парами для игры в бильярд. Нормальная интенсивность прихода клиентов равна λ_0 пар в час. Однако если число пар в бильярдном клубе превышает M, интенсивность поступления клиентов уменьшается на 1 пару в час. Время игры каждой пары является случайной величиной, распределенной по экспоненциальному закону с математическим ожиданием t мин. Бильярдный клуб имеет в своем распоряжении K бильярдных столов и одновременно может расположить не более N пар.

Определить следующие величины:

- вероятность того, что клуб полон и все приходящие клиенты уходят;
- вероятность того, что все бильярдные столы заняты;
- среднее количества используемых бильярдных столов;
- среднее число пар, ожидающих освобождения бильярдного стола.

Сравнить полученные характеристики с моделью, в которой входной поток имеет постоянную интенсивность.

Набор	λ_0	t	K	M	N
T5-1	6	30	5	7	12
T5-2	5	40	4	5	10
T5-3	6	30	5	8	12
T5-4	5	40	4	6	10
T5-5	6	30	5	6	12
T5-6	5	40	4	7	10

Задача АС9.

Компания решила довести число своих машин до N. Президент компании интересуется, как будут справляться с ремонтом имеющиеся R механиков. Средняя скорость прибытия на ремонт равна K раза в час для каждой машины, средняя скорость обслуживания — М машин в час. Если число ожидающих ремонта машин становится больше, чем число ремонтируемых машин, то механики отказываются от перекуров и увеличивают скорость обслуживания на 25%. Законы распределения времён — экспоненциальные.

Определить:

- вероятность того, что все машины работают и механики отдыхают;
- среднее число ожидающих ремонта машин;
- среднее число машин в системе (машины в очереди и на обслуживании);
- среднее время ожидания начала ремонта;
- среднее время нахождения в системе (ожидание и ремонт).

Набор	N	K	M	R
AC9-1	8	0.05	0.5	1
AC9-2	8	0.05	0.5	2
AC9-3	8	0.05	0.5	3
AC9-4	7	0.05	0.5	1
AC9-5	7	0.05	0.5	2
AC9-6	7	0.05	0.5	3
AC9-7	9	0.05	0.5	1
AC9-8	9	0.05	0.5	2
AC9-9	9	0.05	0.5	3
AC9-10	10	0.05	0.5	1
AC9-11	10	0.05	0.5	2
AC9-12	10	0.05	0.5	3

Задача Р14.

С целью увеличения дальности беспосадочного полета производится дозаправка самолетов горючим в воздухе. В районе дозаправки дежурят N самолетов-заправщиков. Если дозаправка началась, то она осуществляется до конца и длится в среднем а минут. Если все дозаправщики заняты, то самолет, нуждающийся в дозаправке, некоторое время ожидает заправки, среднее время ожидания b минут. Если самолет не дождался заправки, то он садится на запасной аэродром. Если самолет видит, что перед ним ожидают дозаправки d самолетов, то он сразу уходит на запасной аэродром.

Интенсивность полетов такова, что в среднем за час в район дозаправки прибывает М самолетов. Число самолетов, ожидающих дозаправки в воздухе, ничем не ограничено.

Определить:

- вероятность того, что самолет будет дозаправлен;
- среднее число занятых самолетов-заправщиков;
- среднее время простоя дозаправщиков.

Набор	N	a	b	d	M
P14-1	4	10	20	4	25
P14-2	1	10	30	6	10
P14-3	3	10	15	4	20
P14-4	2	10	25	5	15

Задача Р15А.

Рассматривается работа автозаправочной станции (АЗС), на которой работают К заправочных колонок. Заправка одной машины длится в среднем а минут. В среднем на АЗС каждую минуту прибывает машина, нуждающаяся в заправке. Если все колонки заняты, то 7 из 8 машин встают в очередь, а каждая 8-я машина проезжает мимо (то есть на АЗС за 8 минут прибывает 7 машин). Если в очереди больше М машин, то они не помещаются на территории АЗС, хвост очереди продолжается на улице, в этом случае в очередь встают только 4 из 8 машин, а остальные проезжают мимо (то есть на АЗС за 8 минут прибывает 4 машины). Если суммарно в очереди больше 2М машин, то в очередь не встаёт ни одна машина, все машины проезжают мимо.

Определить:

- среднее время, проходящее с момента прибытия машины на заправку, до момента начала заправки;
 - среднее число занятых колонок;
 - среднее число машин в очереди.

Сравнить полученные характеристики с моделью, в которой все машины встают в очередь.

Набор	K	a	M
P15A-1	4	3	5
P15A-2	3	2	4
P15A-3	5	4	5

Задача Р15Б.

Рассматривается работа автозаправочной станции (АЗС), на которой работают К заправочных колонок. Заправка одной машины длится в среднем а минут. В среднем на АЗС каждую минуту прибывает машина, нуждающаяся в заправке. Если все колонки заняты, то 7 из 8 машин встают в очередь, а каждая 8-я машина проезжает мимо (то есть на АЗС за 8 минут прибывает 7 машин). Если в очереди больше М машин, то они не помещаются на территории АЗС, хвост очереди продолжается на улице, в этом случае в очередь встают только 4 из 8 машин, а остальные проезжают мимо (то есть на АЗС за 8 минут прибывает 4 машины), кроме того, автомобилисты заправляются в полтора раза быстрее. Если суммарно в очереди больше 2М машин, то в очередь не встаёт ни одна машина, все машины проезжают мимо.

Определить:

- среднее время, проходящее с момента прибытия машины на заправку, до момента начала заправки;
 - среднее число занятых колонок;
 - среднее число машин в очереди.

Сравнить полученные характеристики с моделью, в которой все машины встают в очередь.

Набор	K	a	M
Р15Б-1	4	3	5
Р15Б-2	3	2	4
Р15Б-3	5	4	5

Задача 38.

Система массового обслуживания состоит из K обслуживающих устройств. В систему поступает простейший поток заявок интенсивности la. Времена обслуживания заявок независимы и имеют показательный закон распределения с параметром mu. Заявка, заставшая все устройства занятыми, может встать в очередь или покинуть систему. Вероятность присоединения к очереди пропорциональна числу обслуживающих устройств и обратно пропорциональна числу заявок в системе плюс один.

Определить:

- среднее время нахождения заявки в системе;
- среднее число занятых каналов;
- среднее число заявок в очереди.

Сравнить полученные характеристики с моделью, в которой все заявки встают в очередь.

Набор	K	la	mu
38-1	2	3	2
38-2	3	4	2
38-3	2	4	3
38-4	3	5	3