
Задача 81.

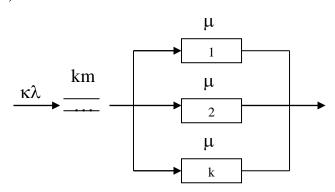
Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок.

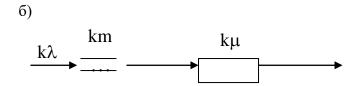
Построить соответствующие графики.

Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?

 $\begin{array}{c|c}
\mu \\
\hline
 km \\
\mu \\
\hline
 2 \\
\mu \\
k
\end{array}$

Набор	k	m
81-1	3	8
81-2	4	8
81-3	2	0
81-4	3	0
81-5	4	0
81-6	2	1
81-7	3	1
81-8	4	1
81-9	2	2
81-10	3	2
81-11	2	3
81-12	3	3


Задача 82.


Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок.

Построить соответствующие графики.

Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?

a)

Набор	k	m
82-1	3	8
82-2	4	8
82-3	2	0
82-4	3	0
82-5	4	0
82-6	2	1
82-7	3	1
82-8	4	1
82-9	2	2
82-10	3	2
82-11	2	3
82-12	3	3

Задача 20.

Рассматривается система автоматического контроля. Если очередная деталь, двигающаяся по конвейеру, застает все контролирующие приборы занятыми, то она проходит на отгрузку без контроля. Цена аппарата – S рублей, эксплуатационные расходы на содержание работающего аппарата s1 рублей в сутки, а простаивающего – s2 рублей в сутки.

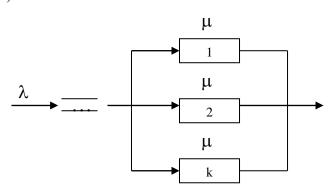
Потери по рекламации от возможного получения потребителем бракованной детали – z рублей. Время контроля одной детали распределено по экспоненциальному закону с параметром μ мин⁻¹. Поток деталей является простейшим с параметром λ мин⁻¹. Срок службы аппарата равен 100 суткам. Вероятность появления бракованной детали на входе равна q.

Сравнить системы с разным количеством контролирующих приборов: K и K+1 в зависимости от штрафа по рекламации z.

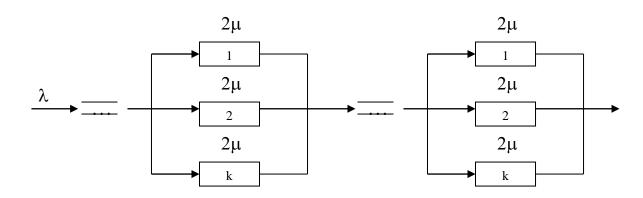
Построить графики.

Какая система лучше (при каких значениях штрафа первая система лучше, при каких – вторая)?

Набор	λ	μ	S	s1	s2	q	K
20-1	0.8	0.2	10000	200	100	0.01	5
20-2	0.8	0.2	10000	200	100	0.01	6
20-3	0.8	0.3	10000	200	100	0.01	3
20-4	0.8	0.3	10000	200	100	0.01	4
20-5	0.7	0.4	10000	200	100	0.01	2
20-6	0.7	0.4	10000	200	100	0.01	3


Задача 83.

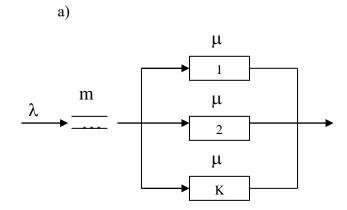
Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок.

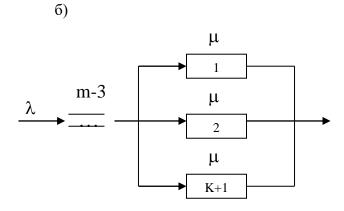

Построить соответствующие графики.

Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?

a)

б)


Набор	k
83-1	1
83-2	2
83-3	3
83-4	4
83-5	5


Задача 84.

Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок.

Построить соответствующие графики.

Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?

Набор	k	m
84-1	1	9
84-2	2	6
84-3	3	3
84-4	1	6
84-5	2	3
84-6	1	3
84-7	1	4
84-8	2	4
84-9	1	5
84-10	2	5
84-11	3	4
84-12	3	5
84-13	3	6
84-14	1	8
84-15	1	7

Задача Т17-654

Посетители прибывают в банк в соответствии с экспоненциальным распределением с математическим ожиданием а клиентов в час. Длительность деловых операций с одним клиентом имеет экспоненциальное распределение с математическим ожиданием примерно пять минут. Банк планирует использовать многокассовый режим работы. Управляющий отдает себе отчет в том, что клиенты могут обратиться в другие банки, если они чувствуют, что их ожидание в очереди является "чрезмерным". Поэтому управляющий хочет уменьшить среднее время ожидания в очереди до b секунд, не более.

Сколько кассиров должен иметь банк?

Набор	a	b
T17-654-1	45	30
T17-654-2	60	40
T17-654-3	70	60
T17-654-4	50	40
T17-654-5	60	45
T17-654-6	75	60

Задача Т17-655

В ресторане быстрого питания работают К кассиров. Посетители прибывают в ресторан в соответствии с экспоненциальным распределением каждые три минуты и образуют одну очередь, чтобы быть обслуженным первым освободившимся кассиром. Время до момента размещения заказа экспоненциально распределено со средним, равным примерно в минутам. Вместимость зала ожидания внутри ресторана ограничена. Однако ресторан имеет хорошую кухню и при необходимости посетители готовы выстраиваться в очередь и вне ресторана.

Определите размер зала ожидания внутри ресторана, кроме мест возле касс, таким образом, чтобы с вероятностью не менее P следующий посетитель не ожидал обслуживания вне ресторана.

Набор	K	b	P
T17-655-1	3	5	0,999
T17-655-2	4	6	0,99
T17-655-3	3	4	0,99
T17-655-4	4	5	0,999
T17-655-5	5	6	0,99
T17-655-6	4	7	0,999

Задача Т17-658А

Аэропорт обслуживает пассажиров трех категорий: городских жителей, жителей пригородов и транзитных пассажиров. Прибытие в аэропорт пассажиров всех трех категорий во времени происходит в соответствии с экспоненциальным распределением со средней интенсивностью а, b и с пассажиров в час соответственно. Время регистрации пассажиров подчиняется экспоненциальному распределению с математическим ожиданием d минут.

Определите количество стоек для регистрации пассажиров, которыми должен располагать аэропорт, чтобы среднее время пребывания пассажира в режиме ожидания и регистрации не превышало f минут.

Набор	a	b	c	d	f
T17-658A-1	15	10	7	6	15
T17-658A-2	10	8	6	5	12
T17-658A-3	9	9	7	6	10
T17-658A-4	10	7	5	5	8

Задача Т17-658В

Аэропорт обслуживает пассажиров трех категорий: городских жителей, жителей пригородов и транзитных пассажиров. Прибытие в аэропорт пассажиров всех трех категорий во времени происходит в соответствии с экспоненциальным распределением со средней интенсивностью а, b и с пассажиров в час соответственно. Время регистрации пассажиров подчиняется экспоненциальному распределению с математическим ожиданием d минут.

Определите количество стоек для регистрации пассажиров, которыми должен располагать аэропорт, чтобы вероятность того, что все регистрационные стойки свободны, не превышала Р.

Набор	a	b	c	d	P
T17-658B-1	15	10	7	6	0,01
T17-658B-2	10	8	6	5	0,02
T17-658B-3	9	9	7	6	0,02
T17-658B-4	10	7	5	5	0,01